
© 2013 ANSYS, INC. ANSYS ADVANTAGE  Volume VII  |  Issue 3  |  2013         39

AUTOMOTIVE

SAFE AUTOMOBILE 
CONTROLS
Subaru uses SCADE software to develop safe and reliable electronically controlled circuits  
and systems for hybrid-electric vehicles.

By Masaru Kurihara, Deputy General Manager, Electronics Engineering Department,  
Fuji Heavy Industries Ltd., Tokyo, Japan

M arket pressures to increase fuel economy, 
maintain safety and provide entertainment 
are forcing the auto industry to develop 
automobiles that are increasingly complex 
and adaptable. Vehicles are now largely 
computerized, and the electronic control 

unit (ECU) that manages the systems in each model is governed 
by complex software. New hybrid-engine vehicle (HEV) technol-
ogies rely on extensive circuitry and software. In an HEV, a cen-
tral computer manages both a traditional combustion engine 
system and an electric motor via ECU. 

Because of the need to continually juggle costs and design 
requirements, the automotive industry employs AUTOSAR (a 
development partnership of electronics, semiconductor and 
software organizations that provides standards to manage grow-
ing electronics complexity in this industry) standards and a 
methodology called model-based development or design (MBD). 
MBD requires design engineers to use a common design environ-
ment that supports model integration and virtual real-time test-
ing of the entire system. 

Subaru®, the automotive brand of Fuji Heavy Industries 
(FHI) Ltd. — a comprehensive, multifaceted transport equip-
ment manufacturer — recently started its own HEV and electric 

Vehicles are now 
increasingly complex, 
adaptable and largely 
computerized.

vehicle (EV) programs and adopted the MBD approach for all 
upcoming development projects, like the Subaru XV. In the com-
pany’s search for a development environment tool that meets 
MBD requirements, Subaru engineers evaluated the SCADE soft-
ware modeling tool from Esterel Technologies, a wholly owned 
ANSYS company. SCADE provides an intuitive graphical inter-
face so system and software engineers can easily integrate and 
verify their models. C source code is generated automatically 
from the models produced in SCADE. This minimizes the chance 
of programmer error and automatically incorporates SCADE’s 
strict standards and safety requirements.

http://www.ansys.com/Industries/Automotive
http://www.ansys.com/Products/Simulation+Technology/Systems+&+Multiphysics/Systems+&+Embedded+Software/SCADE+Suite
http://www.ansys.com/Industries/Automotive/Application+Highlights/Electric+Powertrain
http://www.ansys.com/Products/Simulation+Technology/Systems+&+Multiphysics/Systems+&+Embedded+Software/SCADE+Suite


© 2013 ANSYS, INC. ANSYS ADVANTAGE  Volume VII  |  Issue 3  |  2013         40

AUTOMOTIVE

REORGANIZATION OF SOFTWARE ARCHITECTURE
Since HEV development was quite new to Subaru, engineers 
had the opportunity to create the software architecture from the 
ground up. Applying AUTOSAR standards to the new ECU reduced 
basic software development cost and time. However, an even 
more challenging and important goal was to ensure that the soft-
ware components could be reused for future projects. All require-
ments for the ECU are marked as either application software 
or basic software to configure three layers of software, as per 
AUTOSAR architecture. Services, drivers and the operating sys-
tem (OS) are components of basic software; they are created by 
hand-coding or are available as commercial off-the-shelf (COTS) 
products. Subaru focuses on pure application design according to 
the requirements, and this facilitates the deployment of SCADE 
since the software’s models are independent from the OS and 
hardware-dependent implementations.

When SCADE is deployed, interface nodes for the middleware 
layer are created automatically by Subaru’s own Java® utilities 
based on Eclipse APIs that analyze the definition files written for 
basic software. Data types and data structures are extracted from 
the definition files and defined as SCADE types in the SCADE proj-
ect. Bridging the gap between application and services with a 
middleware model layer minimizes human error. When the inter-
face between the middleware layer and the basic software layer is 
changed, the definition of SCADE types is automatically updated 
in a consistent way. SCADE’s semantic checker continually ver-
ifies the SCADE type definition with the models to eradicate  
modeling error.

Electric Brain Unit (Management)

Engine
ECU

Transmission
ECU

Motor
ECU

Battery
ECU

BatteryMotor InverterEngine

CVT
Clutch

Clutch

To front wheels
and rear wheels

�  SCADE is deployed for the hybrid vehicle management system named 
electric brain unit (EBU) for a production vehicle released to the market in 
2013. In this schematic, the electric brain unit manages several ECUs.

To continually juggle costs and design 
requirements, the automotive industry employs 
AUTOSAR standards and model-based design.

SOFTWARE DESIGN PROCESS WITH SCADE
Once the SCADE types are defined, Subaru can execute a set of 
small cycles iteratively until a detailed design and verification 
process is completed. The software development process with 
SCADE at Subaru starts with development of test scenarios based 
on software requirements and conversion of many pieces of func-
tional models (Simulink®) designed by system engineers into 
SCADE models via a Simulink gateway. Once the models are con-
verted successfully, they are integrated into a safe SCADE archi-
tecture model. To maintain consistency of the conversion from 

�  Software architecture in EBU control software is layered to comply with the AUTOSAR standard.

Actuator
Software

Component

Application
Software

Component

Standardized
Interface

Operating
System

Application
Software

Component

Sensor
Software

Component
AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR Runtime Environment (RTE)

AUTOSAR 
Software

Basic Software

ECU Hardware

AUTOSAR
Interface

Standardized
AUTOSAR
Interface

Application Layer
(SCADE Models)

Middleware Layer
(SCADE Models)

Services/Drivers/OS

ECU Hardware

Standardized
Interface

Standardized
Interface

Microcontroller
Abstraction

AUTOSAR
Interface

AUTOSAR
Interface

Complex
Device
Drivers

ECU
AbstractionCommunicationServices

AUTOSAR
Interface

Standardized
Interface

Standardized
Interface

Standardized
Interface

Standardized
Interface

Simulink into SCADE, engineers feed the 
same test scenarios developed for func-
tional model design simulation into 
SCADE for unit testing. When the detailed 
design is completed with unit tests, C code 
is generated from the integrated model to 
pass to the EBU test. 

SAFE ARCHITECTURE DESIGN 
WITH SCADE
Due to the modularity of each SCADE 
node, functional part models are verified 
by unit testing. The most critical issue 
for safe software architecture is to ensure 
that all data are safe when the applica-
tion operates under multi-task execution. 
Introducing a safe partitioning architec-
ture from a COTS OS into the automo-
tive software is not easy because of the 
trade-off between cost and functionality; 

http://www.ansys.com/Industries/Automotive


© 2013 ANSYS, INC. ANSYS ADVANTAGE  Volume VII  |  Issue 3  |  2013         41

�  HEV software development process with SCADE

SCADE

Software requirements
Specifications

Architecture design

Detailed design

Code generation

Integration tests

Unit testing

Integrate everything
on ECUC codes

Gateway

Test scenario Test scenario

Pieces of function models
(Simulink)

multi-task execution is mandatory for 
optimized execution. To satisfy the trade-
off issue, a safe SCADE architecture model 
is designed.

A root node is commonly deployed 
to a safe architecture independent from 
projects or type of applications. It con-
sists of a safe state machine containing 
a decision tree. The state machine has 
only two states: init and run. The init 
state is active only at initialization, while 
the run state is active for the rest of the 
cycle. The run state contains a decision 
tree with three selections that can be exe-
cuted, depending on the value of a vari-
able thread coming from the basic soft-
ware. The difference in the values comes 
from the timing of execution configured 
in OS. For example, each subnode can be 
executed each 0.1 ms, 1 ms or 10 ms, as 
shown in the figure. However, subnodes 
communicate with each other via an 
interface and, therefore, need protection 
from interruption. A faster task could be 
interrupted during execution of a slower 
task. What if the slower task uses the data 
intended for a faster one? During the exe-
cution of the slower task, the output data 
from the faster one is updated by the 
interruption, and this may overwrite the 
values being used for the current execu-
tion. These types of data errors can pro-
duce random results in the model. For 
slower tasks to execute safely, the inputs 
should be stored explicitly before being 
used in the calculation.

COMBINING APPLICATION 
MODELS WITH A SAFE SCADE 
ARCHITECTURE MODEL 
Once the root node describes con-
crete architecture, each subnode can 
be designed using a modular approach. 
Functional models for EBU applications 
are designed by a system engineering 
team with Simulink. These Simulink mod-
els are also imported into SCADE using the 
Simulink gateway. Before being imported, 
they are verified in the Simulink environ-
ment based on the software requirements. 
The test scenarios are described in Excel® 
sheets and converted into *.in format for 
the SCADE simulator. When both simula-
tion results are identical, it means that 
the simulation is correct. Once all pieces 
of the functional Simulink models are 
converted into SCADE correctly, they are 
integrated into the safe SCADE architec-
ture node. 

COURTESY SUBARU.

REFINEMENT OF SCADE MODELS 
To reduce verification time, the SCADE 
Suite Design Verifier is used to check if 
the SCADE model prior to refinement is 
identical to the one after refinement. In 
general, formal verification techniques 
are used to test properties like safety, but 
verification algorithms may face numeri-
cal difficulties if the nodes contain more 
arithmetic calculations than decision  
diagrams and state machines. Subaru 
engineers refine the SCADE models daily, 
and Design Verifier helps to validate  
the models.

SAFE AND RELIABLE 
AUTOMATIC CODE GENERATION 
FOR INTEGRATION
The final stage of the SCADE process is 
to generate C source codes from the ver-
ified SCADE models using the IEC 61508 
certified SCADE Suite KCG code generator. 
The generated code usually meets safety 
objectives. Because the KCG tool has been 
qualified and certified for this purpose, 
Subaru verifies that the safe properties 
obtained from the safe SCADE architec-
ture model are retained in the generated 
codes. Two SCADE Suite KCG features are 
essential to ensure that safe properties 



© 2013 ANSYS, INC. ANSYS ADVANTAGE  Volume VII  |  Issue 3  |  2013         42

� A combination of safe state machine and decision diagram is the basis of the safe SCADE architecture model.

� Safe access to variables that memorize the values exists as a unique path.

Comparing the Architecture Model and Generated Codes

SCADE assures data access with a unique path when a node con-
tains variables that memorize the value. This is not applied to a 
“function” in SCADE because the function does not contain any 
variables that memorize the values. If node TN() calls node a() 
and node b(), and a() and b() commonly call node c(), and all of 
them contain variables that memorize values, the data are struc-
tured by the node in the generated codes. Although node c() is 
commonly called from two nodes a() and b(), its correspond-
ing data are structured separately. Because KCG guarantees it, 
another data structure is created safely when the root node TN() 
is called by interruption while it is being executed.

The generated code is also correct thanks to SCADE Suite’s 
KCG IEC 61508 certified code generator. C code is a part of the 
generated codes from a safe SCADE Suite architecture model 
using KCG. To compare the safe SCADE architecture model with 
the codes, all copies of inputs are coded by the kcg_copy macro 
function using the default memcpy function. KCG makes it 
possible to replace the macro with a user-defined macro after 

code generation without any impact on the other codes. Subaru 
replaced the kcg_copy macro with the one inhibiting interrup-
tion during the copy.

AUTOMOTIVE

42        ANSYS ADVANTAGE  Volume VII  |  Issue 3  |  2013 

Architect  
Design::

Main_High

Architect  
Design::

Main_High

Architect  
Design::

Main_High

http://www.ansys.com/Industries/Automotive
http://www.ansys.com/Products/Simulation+Technology/Systems+&+Multiphysics/Systems+&+Embedded+Software/SCADE+Suite


© 2013 ANSYS, INC. ANSYS ADVANTAGE  Volume VII  |  Issue 3  |  2013         43ANSYS.COM ANSYS ADVANTAGE        43

are met in the codes: The variables are protected from overwrit-
ing when interruption occurs, and input data is appropriately 
copied before being used as described in the safe SCADE archi-
tecture model.

DEVELOPING CONTROL SOFTWARE FOR HEVS 
USING SCADE
Using SCADE software, Subaru was able to describe consis-
tent readable models ranging from safe architecture design to 
detailed designs. Thanks to SCADE Suite’s KCG IEC 61508 certi-
fied code generator, the verification time at code level was signifi-
cantly reduced, as most of the verification was completed upfront 
at the SCADE model level. A small group of Subaru engineers 
completed a large and very complex application while signifi-
cantly reducing software development and testing time. Subaru 
engineers continue to use SCADE Suite as an important part of 
their HEV development process. 

Subaru engineers 
completed a large and very 
complex application while 
significantly reducing 
software development  
and testing time.

ANSYS.COM ANSYS ADVANTAGE        43

COURTESY SUBARU.

if (Ctxt_App_Main.init) { 
  Ctxt_App_Main.init = kcg_false; 
  SM1_state_act = SSM_st_Init_SM1; 
 } 
 else { 
  �SM1_state_act = Ctxt_App_Main.SM1_

state_nxt; 
 } 
 switch (SM1_state_act) { 
  case SSM_st_Run_SM1 : 
   �Ctxt_App_Main.SM1_state_nxt = 

SSM_st_Run_SM1; 
   switch (thread) { 
    case low : 
     �copy_tbMidType(&Ctxt_App_

Main.tbMid, &_L8_SM1_Run_
WhenBlock_low); 
copy_tbHighType(&Ctxt_
App_Main.tbHigh, 
&_L7_SM1_Run_WhenBlock_low);

Main_Low(&InBufLow,&_L7_SM1_Run_
WhenBlock_low,&_L8_SM1_Run_WhenBlock_
low, 
     &Ctxt_App_Main._2_Context_2);

kcg_copy_tbLowType(&Ctxt_App_Main.
tbLow,&Ctxt_App_Main._2_Context_2.
tbLow);

     kcg_copy_
OutBufLowType(&OutBufLow,&Ctxt_App_
Main._2_Context_2.OutBufLow); 
     break; 
    case mid : 
     �copy_tbHighType(&Ctxt_App_Main.

tbHigh, &_L8_SM1_Run_WhenBlock_
mid); 
�Main_Mid(&InBufMid,&_L8_SM1_Run_
WhenBlock_mid,&Ctxt_App_Main.
tbLow, 
&Ctxt_App_Main._1_Context_2);

kcg_copy_tbMidType(&Ctxt_App_Main.
tbMid,&Ctxt_App_Main._1_Context_2.
tbMid);

kcg_copy_
OutBufMidType(&OutBufMid,&Ctxt_App_
Main._1_Context_2.OutBufMid); 
     break; 
    case high : 
     �Main_High(&InBufHigh,&Ctxt_App_

Main.tbMid,&Ctxt_App_Main.tbLow, 
 &Ctxt_App_Main.Context_2);

kcg_copy_tbHighType(&Ctxt_App_Main.
tbHigh,&Ctxt_App_Main.Context_2.
tbHigh);

kcg_copy_OutBufHighType(&OutBufHigh,&
Ctxt_App_Main.Context_2.OutBufHigh); 
     break; 
   } 
   break; 
  case SSM_st_Init_SM1 : 
   �Ctxt_App_Main.SM1_state_nxt = 

SSM_st_Run_SM1;
kcg_copy_tbLowType(&Ctxt_App_Main.
tbLow, (tbLowType *) &tbLowInit); 
kcg_copy_tbMidType(&Ctxt_App_Main.
tbMid, (tbMidType *) &tbMidInit); 
kcg_copy_tbHighType(&Ctxt_App_Main.
tbHigh, (tbHighType *) &tbHighInit); 
kcg_copy_OutBufLowType(&OutBufLow, 
(OutBufLowType *) &OutBufLowInit); 
kcg_copy_OutBufMidType(&OutBufMid, 
(OutBufMidType *) &OutBufMidInit); 
kcg_copy_OutBufHighType(&OutBufHigh, 
(OutBufHighType *) &OutBufHighInit); 
   break; 
 }




